
Microservices and DevOps

Scalable Microservices
Stability Antipatterns

Henrik Bærbak Christensen



Release It!

• Written by what is obviously

a highly skilled practitioner ☺

• Definitely not written by an

academic ☺?  ?

– I have had to write most of the 

definitions to pinpoint the

terminology used…

– Each section does not follow 

a pattern template

• (name, problem, solution, forces)

CS@AU Henrik Bærbak Christensen 2



Punch line…

• Cynical software expects bad things to happen and is 

never surprised when they do. Cynical software doesn’t 

even trust itself.

• A highly stable design usually costs the same to 

implement as an unstable one.

– Hm? I think Nygard means ‘the total cost over lifetime’ here…

CS@AU Henrik Bærbak Christensen 3



About a half year of ‘ups’

CS@AU Henrik Bærbak Christensen 4



CS@AU Henrik Bærbak Christensen 5



CS@AU Henrik Bærbak Christensen 6



More recent

CS@AU Henrik Bærbak Christensen 7



CS@AU Henrik Bærbak Christensen 8



And

CS@AU Henrik Bærbak Christensen 9



Akin to Nygard §1

• MSDO 2020 Crunch broke down. Why?

– No try catch around ‘network.close()’ in my finally() clause 

– Was due to the ‘only 16 networks available’ default docker setup

CS@AU Henrik Bærbak Christensen 10



Another one

• Crunch3.baerbak.com

– The central submission server

• Fixed IP in my own range, provided by AUIT

• During maintenance September 2016 they shut down this

range’s DNS name servers without telling me!

• Result: All my servers could not see the internet!

– And no warning at all!

Morale: My software in production change even

when I do not change my software!

CS@AU Henrik Bærbak Christensen 11



Definitions

• Transaction: Abstract unit of work processed by the 

system

– More akin to ‘story’ (XP) or ‘use case’

• System: Complete, interdependent set of hardware, 

applications, networks, power supplies, and services 

required to process transactions

• Impulse: Rapid shock to the system

• Stress: Force applied to the system over extended time

CS@AU Henrik Bærbak Christensen 12

Reusing mechanical engineering terminology



Definitions

• Strain: Changed shape when stress is applied.

• Longevity: Ability to keep processing transactions for a 

long time [long = more than timespan between 

deployments]

• Crack: essentially synonym with failure

• Failure mode: the trigger, the way cracks propagate, and 

the result of the damage

– Safe failure modes are better than unpredictable failure modes!

• Crackstoppers: failure modes that keep cracks away from 

indispensable system parts

CS@AU Henrik Bærbak Christensen 13



Examples

• Straining the system

– Requests get queue up

• Queues grow

– RAM exhausted – start swapping to disk

• Requests get queue up much much faster…

• … disaster…

CS@AU Henrik Bærbak Christensen 14



Stability

• Accept that failure will happen! (‘Design for failure’)

• Safe failure mode: A failure mode that contains the 

damage and protects the rest of the system.

• Stability (resilience, longevity): Ability to keep processing 

for a long time even when there are transient impulses, 

persistent stresses, or component failures

• Analogy: Crumble zones in modern cars…

CS@AU Henrik Bærbak Christensen 15



Compare to Bass, 3rd Ed

• Availability (1): Property of software that it is there and 

ready to carry out its task when you need it to be.

• Avizienis el al.: Dependability is the 

ability to avoid failures that are more 

frequent and more severe than is 

acceptable

• Availability (2): Ability of a system to mask or repair faults 

such that the cumulative service outage period does not 

exceed a required value over a specified time interval

CS@AU Henrik Bærbak Christensen 16

Stability (resilience, longevity):

Ability to keep processing for a 

long time even when there are 

transient impulses, persistent 

stresses, or component 
failures



Discussion

• Student report: “As my program is running on Amazon 

EC2, it is always available”

– What is the ‘system’ definition here?

• Ragnarok (my phd project) crashed due to an unhandled 

”disk full” error and left the persistent data structure in an 

inconsistent state

– Impulse, strain, crack, ?

– Potential safe failure mode?

CS@AU Henrik Bærbak Christensen 17



Discussion

CS@AU Henrik Bærbak Christensen 18



Discussion

• Oct 20 2013

– Grundfos dorm server did not send data for 26 hours

• Normally 70KB/s

– On Oct 21 it went online again, pumping all accumulated data 

into Karibu during 51 minutes (70Kb/s x 26 hours = lot!)

• Impulse, strain, crack, ?

CS@AU Henrik Bærbak Christensen 19



Chain of failure

Cracks propagate!

– At each step

• It can be accelerated

• It can be slowed

• It can be stopped

• And…

– High level complexity → more directions for cracks to propagate

– Tight coupling → accelerate cracks

CS@AU Henrik Bærbak Christensen 20



Crack analysis

• Process: Look at every

– External/remote call

– Every I/O

– Every use of resources

– Every expected output

– Every mutex/synchronized/critical region

• … and ask

What are all the ways this can go wrong?

Analyze types of impulses and stresses

CS@AU Henrik Bærbak Christensen 21



Examples

• What if I cannot make the initial connection?

• What if it takes 10 minutes?

• What if I get disconnected?

• What if it takes 2 min to respond?

• What if 100.000 queries arrive at any one time?

• What if my disk is full when I try to log the error message 

from the SQLException that happened because the 

network during the update transaction while…?

CS@AU Henrik Bærbak Christensen 22



Stability Antipatterns

14 root causes that create, accelerate 

or multiply cracks and lead to system 

failures

CS@AU Henrik Bærbak Christensen 23



Integration Points

• Integration Points: Points in the software that integrate 

with external systems [My shot at a definition!]

– Sockets, process, pipe, RPC, file access, database call, feed, …

– Even calls to critical regions ala synchronized methods

• Lessons to remember

– Every integration point will eventually fail in some way

– Failures take several forms. You will not get nice error messages

– Failures propagate quickly

– Know when to open up abstractions

• Cracks does not respect your nice role boundaries ☺

CS@AU Henrik Bærbak Christensen 24



Ex: RabbitMQ Java library

• Thanks for nothing…

• My perception is that failure conditions are often poorly 

documented. I need to understand the root cause…

• Finding the underlying problem, require to open up the 

abstraction

– Ahh – plowing through MongoDB connector source code 

CS@AU Henrik Bærbak Christensen 25



Integration Points

• In my mind ‘Integration Points’ is not really an anti-pattern

• It is more the central concept/term we will apply for all 

those ‘code segments’ that pose a stability issue, and can 

lead to all the other anti-patterns.

CS@AU Henrik Bærbak Christensen 26



Chain Reactions

• Scaling

– Horizontal: More machines (Google way)

– Vertical: Bigger machine (Oracle way)

• Load-balancing 

over horizontal farm

• One server down: 

Load distributed

CS@AU Henrik Bærbak Christensen 27



Chain Reactions

• If one server failed due to load-related condition, the rest 

of the pool are now more likely to fail!

• Chain Reaction: One failure (often resource/load related) 

in one server leads to increased probability of failures 

(often of similar type) in other servers [My shot at a definition!]

CS@AU Henrik Bærbak Christensen 28



Ex: WoW Realms

• World of Warcraft

– Realms safeguard against Chain Reactions

– Real hard way of

load-balancing…

CS@AU Henrik Bærbak Christensen 29



Cascading Failures

• Cascading failure: A failure that ”jumps the gap” from one 

service or layer to another [My shot at a definition!]

– Example: Database failure, cascades into app server.

CS@AU Henrik Bærbak Christensen 30



Example

• In a 2014 course I made a Facade service, delegating to 

a fortune cookie service I found on the internet

– It, however, failed right after the seminar in which I introduced it 

• In MSDO, I wanted to reuse a ‘weather service’ that was 

introduced in my Cloud Computing course, only to find 

the underlying service was discontinued.

– Rewrote it into the ‘quote service’… 

CS@AU Henrik Bærbak Christensen 31



Users

• Human users have a knack for creative destruction…

• Users means memory is consumed

• Users do unpredictable things to your apps

• Users may be malicious

• Users will gang up on you

– ”Your site will get slashdotted”

– Slashdotted = posting a web URL on slashdot will cause a large 

surge in web traffic, which can overwhelm small sites…

CS@AU Henrik Bærbak Christensen 32



Users

• And then there are the ‘Unwanted users’

– Bots that screen scrape your site to lure your prices

– Competitive intelligence

• Nygard mention some tricks to block them of

– Robots.txt only work with the nice ones

– Firewalling them off

– Sue them

CS@AU Henrik Bærbak Christensen 33



Blocked Threads

• In the good old Amiga days, you knew a crash ☺

• Modern JVMs seldom crash the machine but just hangs 

in deadlocks, doing nothing useful.

• Blocked threads: All processes are blocked waiting on 

some impossible outcome

CS@AU Henrik Bærbak Christensen 34



Example

• System uses ‘ObjectCache’ with ‘get()’

– Interface says nothing about ‘synchronization’, but the 

implementation does…

• ‘create’ does external call to inventory system

• … which crash due to ‘unbalanced capacities’

• Now, first thread to do cache miss calls ‘create’ which will wait 

for response that never comes (and never release lock on this)

• And all other will block as well, even if item in the cache…

CS@AU Henrik Bærbak Christensen 35

Is slow, so they make a 
‘Caching Proxy’:
If (incache) return cache;

else super.get()



Self-Denial Attacks

• Self-Denial Attacks: Impulses that are generated from 

your own organization

• Ex

– Winter storm: Lystrup skole webpage

• We do not know if school will be operating. Check back at 07.00 

o’clock

– The Kähler vase incident

• Put a specific vase on sale on a specific time

– Which caused the web site to crash

CS@AU Henrik Bærbak Christensen 36



Diablo III Launch May 15, 2012

• As well as ‘Pokemon No’

2016

CS@AU Henrik Bærbak Christensen 37



Scaling Effects

• Scaling Effects: Failures occur when increasing n, as

scaling often goes as O(n^2) or worse

– Point-to-point communication between servers scale as O(n^2)

• Development environment: one server 1 connection

• Staging environment: two servers 4 connections

• Production environment: 16 servers 256 connections !

– Shared resources are resources that all services must access to 

get work done (akin ‘singleton pattern’)

• Saturation → connection backlog

• Backlog exceeds listen queue → failures

CS@AU Henrik Bærbak Christensen 38



Unbalanced Capacities

• Example: The Lyon airport stress test I did in… Lyon airp.

– Throttling up the producer rate of sending messages

• Strain ☺

• My daemon code was single-threaded, so WTF???

– ”fetch msg from MQ, convert, store in MongoDB”

CS@AU Henrik Bærbak Christensen 39

Producer

MQ

Karibu

Mongo

Karibu:
Pull message, 

convert, store in 
Mongo, repeat



Unbalanced Capacities

• It turned out that

– RabbitMQ can deliver message at vastly higher speeds than 

MongoDB can ever store them (not surprising, but…)

– The RabbitMQ Java connector/driver uses prefetch

• Fetch next message even though the last has not been 

acknowledged by my daemon code yet!

• (And where was that described in the documentation???)

• Limit on prefetch: default is ∞ thanks!

• Result: Chain reaction due to GC overload

– Stemming from unbalanced capacities (mq vrs db)

CS@AU Henrik Bærbak Christensen 40



All systems have a limit

• All systems have a limit after which performance 

degrades rapidly

Around 70% utilization the 
response time exceeds
3 times the service time !



Balanced System and Bottleneck Analysis

• A queuing system is balanced if all nodes have the 

same equal utilization

U1 = U2 = U3

• A software system can achieve its best possible, scalable 

performance if it’s a balanced system

– Therefore you should generally consider the node with highest 

utilization when you need to optimize a system (this is typically 

where the bottleneck is)

– And generally stop when the system is balanced

Node 1 Node 2 Node 3

U1 U2 U3



Unbalanced Capacities

• Unbalanced Capacity: The mismatch between capacity of 

system parts that participate in handling transactions [own 

definition]

• Note

– Depends on particular usage profile

• Particularly subject to ‘Attacks of self denial’

– That is, suddenly the usage profile change dramatically

» The Kähler vase case; Black Friday; Christmas sales…

– Difficult to test as ratios often differ in QA and prod.

• QA: often front-end is 1-1 but in prod. 10-1

CS@AU Henrik Bærbak Christensen 43



Dogpile

CS@AU Henrik Bærbak Christensen 44

• Dogpile: A large set of starting/initializing servers 

generate an impulse that generates a cascading failure 
[own definition]

• Or

– Startup/periodic load may be

much higher than steady-state

load, triggering circuit-breaker

tripping…

• Can also occur when external

event trigger synchronization

of traffic

– Like pedestrian stoplights…



Dogpile

• Anyone from my SAiP fagpakke?

– One important aspect of the load generator is the gaussian delay 

in the workload model

– Why is that extremely important?

• How to avoid dogpiles?

– Architectures must be crafted to acknowledge their existence and 

take preventive measures.

CS@AU Henrik Bærbak Christensen 45



Dogpile

• Even swarm has a dogpile akin-of problem

– ‘depends_on’ attribute in compose-file dictate the starting order of 

services, but there is a difference between ‘running’ and ‘ready-

for-work’ state…

• We will return to dockerfile HEALTHCHECK later

– Can tell if a container is ‘ready-for-work’ rather than just running

CS@AU Henrik Bærbak Christensen 46



Force Multiplier

• Force Multiplier: Control plane automation can overreact 

(multiply the force) upon detected failures, due to incorrect 

assumptions or missing/incorrect control data, leading to 

cascading failures [Own definition]

– Example:

• Reddit Goal: update zookeeper cluster

– Shut down autoscaler, then update zookeeper cluster

• Actual process

– Package mgt system detects autoscaler missing, restarts it (!)

– Autoscaler reads zookeeper (partially migrated) data

» Determine much less need for app and cache servers

» So, starts shutting down a lot of servers

– The package management ‘multiplied the force’ on system…
CS@AU Henrik Bærbak Christensen 47



Even Swarm

• I had one incident, a crashing version of SkyCave

daemon sneaked by my pipeline test

• Upon redeploying the stack…

– (I was experimenting with rollback, but obviously got it wrong)

– … swarm just restarted services, saw them crash, and restarted

– Eventually my machine would ‘Unsteady State’ crash

CS@AU Henrik Bærbak Christensen 48



Safeguards

• Generally, the hardware/robotics guys are better at it…

– Industrial robots have multiple layers of safeguards to prevent 

damage to people and facilities…

• So encode safeguards in software

– If 80% of system is suddenly gone, it is probably you that 

observes a distorted version of the world

– If gap between observed and desired state is large, ask for 

human intervention/confirmation

– Hysteresis: 

• Start VMs quickly, stop them slowly.

• VMs takes time to start handling load, so do not start another one 

10ms after – even if you see load not decreasing right now…

CS@AU Henrik Bærbak Christensen 49

The Governor Pattern



Slow Responses

• Slow Response: One system part starts to respond 

slowly

– Easily triggers a ‘cascading failure’, as depending systems of 

course also starts responding slowly

– Example: 

• Single-threaded SkyCave (‘socket.cpf’)

• If user 1 invokes ‘quote’ and it takes 10 minutes to respond…

• Then what will user 2, 3, 4, … experience?

CS@AU Henrik Bærbak Christensen 50



SLA Inversion (*)

• SLA Inversion: The best SLA you can offer is the worst 

SLA of any external software system you depend upon.

– If your system depends upon service X that offers only 88% 

availability, how can you promise 99,999%?

– Example: The cookie service I relied upon had very low 

availability…

• (*) Removed from his second edition…

CS@AU Henrik Bærbak Christensen 51



Unbounded Result Sets

• Unbounded Result Sets: Queries may return many more 

elements than expected

– Query, loop-over-elements

– Works well with 230 elements, but 5.000.000 ?

– And the result?

• Ressource strain, slow response, cascading failure, …

– Always query with a limit !

CS@AU Henrik Bærbak Christensen 52



A Similar AntiPattern

• Not mentioned by Nygard directly, but

• Steady state: For every mechanism that accumulate 

resources, some other mechanism must recycle that 

resource.

• Then we must also have AntiPattern

• Unsteady state: One or more mechanisms exist, that 

does not recycle resources but keeps accumulating them

CS@AU Henrik Bærbak Christensen 53



Summary (*)

CS@AU Henrik Bærbak Christensen 54

First Ed.


